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Incorporating extreme events into risk measurement

= Stress testing and scenario analysis

I—Str&ss testing and scenario analysis

What are stress tests?

Stress tests analyze performance under extreme loss scenarios

Heuristic portfolio analysis
e Steps in carrying out a stress test

1. Determine appropriate scenarios
2. Calculate shocks to risk factors in each scenario
3. Value the portfolio in each scenario

Objectives of stress testing
e Address tail risk
e Reduce model risk by reducing reliance on models
e “Know the book": stress tests can reveal vulnerabilities in specfic
positions or groups of positions

Criteria for appropriate stress scenarios
e Should be tailored to firm's specific key vulnerabilities
e And avoid assumptions that favor the firm, e.g. competitive
advantages in a crisis
e Should be extreme but not implausible
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I—Str&ss testing and scenario analysis

Approaches to formulating stress scenarios

Historical scenarios based on actual past events
e Issues: time frame of individual returns, treatment of
correlation
e Omitting key risk factor, such as option implied volatility for
option portfolio
“What if” or hypothetical scenarios based on assessment of potential
large market and credit events
e Must be calibrated so as to achieve appropriate severity
e May be based on models and/or macroeconomic scenario,
must then be translated into asset returns
Factor-push approach in place of or (better) in addition to judgement

e Compute impact of many combinations of risk factor returns
e Stress losses define as largest portfolio losses
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I—Stress testing and scenario analysis

Strengths and weaknesses of stress tests

e Pros

e Avoid reliance on models, model risk
e Easy to communicate

e Cons

e Scenarios are not directly associated with probabilities
e Arbitrariness in scenario design
e Difficulty including, configuring large number of risk factors
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I—Str&ss testing and scenario analysis

Portfolio sensitivity analysis

e Often categorized as a form of stress testing
e But focused on small changes

e Help know the book, identify concentrations, understanding drivers
of P&L and risk

e Can capture nonlinearity by displaying convexities, but may miss
nonlinearities that only appear if large market moves realized
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= Estimating expected shortfall

Definition of expected shortfall

e Expected shortfall (or _ [ _
conditional Value-at-Risk or Value-at-Risk
tail Value-at-Risk or
expected tail loss) is defined
as expected value of losses,
given that VaR loss is exceeded

231d Jua.1n>
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e Expected value of realizations
of the random variable X,
representing portfolio losses
expressed as a positive number, — — — —
in the tail of the distribution,

Expected shortfall at a 95 percent confidence

left of the VaR scenario: level is area under density to left of VaR, divided
by probability (0.05) that VaR is breached.

E [X|X > VaR(t, o, 7)]
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Estimation of expected shortfall

e VaR a quantile of loss distribution<>expected shortfall a moment of
truncated loss distribution

e Expected shortfall for a single position can be computed using the
same basic approaches used to compute VaR

e Parametric and Monte Carlo simulation approaches can employ same
specific distributional hypothesis as VaR

e Monte Carlo and historical simulation approaches can employ same
set of simulated values as VaR

e Parametric expected shortfall computed analytically

e Monte Carlo and historical simulation estimates of expected
shortfall: mean of simulated losses> VaR(t, a, )

e Example: 1-day expected shortfall of long position in S&P 500
index with initial value $1 000000 as of close on 28Aug2013
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Parametric estimates of expected shortfall

e Assume returns lognormally distributed, use EWMA estimate of
volatility 0.00691049 as of 28Aug2013
e Moments of truncated normal distribution can be computed

analytically
e In lognormal model, ratio of expected shortfall to the VaR is
_ (z1-a)
(1-a)zi_n

e (-) represents standard normal density function, e.g.
?(20.05) = ¢(—1.645) = 0.103136

| conf. level VaR exp. shortfall ratio |

0.900 8817.04 12074.24 1.3694
0.950 11302.38 14173.64 1.2540
0.975 13452.99 16046.44 1.1928
0.990 15947.66 18270.67 1.1457

Parametric estimates of 1-day VaR and expected shortfall of $1 000000 long
position in S&P 500 on 28Aug2013.
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Estimating expected shortfall via historical
simulation

e Use 2 years (T = 503) of return observations from 28Aug2011 to
28Aug2013
e Estimated as mean of observed losses in excess of VaR scenario

e As with VaR, expected shortfall estimates may vary widely with
historical look-back period

| conf. level rank VaR exp. shortfall ratio |

0.900 50 11348.34 18439.68 1.6249
0.950 25 16147.23 23280.36 1.4418
0.975 12 22966.30 27450.94 1.1953
0.990 5 26705.46 30872.39 1.1560

Historical simulation estimates of 1-day VaR and expected shortfall of
$1 000000 long position in S&P 500 on 28Aug2013. The rank stated in the
table is that of the smallest loss included in expected shortfall and is one less

than that of the VaR scenario.
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= Estimating expected shortfall

Computation of expected shortfall by historical

simulation
it Se date t Se_1 F) - parith,(i) P&L
T 52 1229.10 09Nov201l 1275.92 -0.03739 -0.03670 | -36695.09
2 18 112956 22Sep2011 1166.76 -0.03240 -0.03188 = -31883.16
3 17 1166.76 21Sep2011 1202.09 -0.02983 -0.02939  -29390.48
4 25 1099.23 030ct2011 1131.42 -0.02886 -0.02845  -28450.97
5 46 121828 01Nov201l 1253.30 -0.02834 -0.02794  -27942.23
6 O 115423 09Sep2011 1185.90 -0.02707 -0.02671  -26705.46

The entries in the penultimate column are the ordered arithmetic historical
returns 7, i =1,..., T and T = 503. The P&L realizations are x (g(i) — 5:).
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Relationship of expected shortfall to VaR

e Expected shortfall is always at least as great as the VaR: average of
loss levels greater than the VaR

e Can be much larger than VaR if return distribution is heavy-tailed
and skewed
e Ratio of expected shortfall to VaR is higher at lower confidence
levels and falls toward 1 for very high confidence levels
e Many large observations beyond VaR at lower confidence level
e The normal distribution is thin-tailed—
e Parametric estimates of ratio of expected shortfall to VaR relatively
low at lower confidence level
e Highlights disadvantage of standard model: implies risk of very large
losses relatively low
e Empirical distributions heavy-tailed—
e Historical simulation expected shortfall generally quite high relative
to VaR
e Disparity shrinks as confidence level rises
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= Estimating expected shortfall

Estimation of expected shortfall by historical
simulation

151 historical simulation

S/puenb [ewiou T0°0
3jiuenb jewiou 0T°0

parametric lognormal model

ratio of expected shortfall to VaR

0.90 0.92 0.94 0.96 0.98 1.00 m.om 1 | | | | . | -
VaR confidence level =-0.02 0.00 0.02 0.04
Ratio of expected shortfall to VaR as a function Comparison of empirical distribution of log S&P
of confidence level. returns 28Aug2011 to 28Aug2013 and normal

model.
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Advantages and disadvantages of expected shortfall

e Expected shortfall in principle oriented toward tail-risk measurement
e More appropriate than VaR for use in setting (—)economic capital
e States average extreme event if extreme event should occur

e But unlikely per se to provide significant improvement in tail risk

measurement
o Not really an alternative to VaR
e Alternative statistic within VaR framework
e |f data and model not providing good tail risk estimate, expected
shortfall won't help much
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Backtesting expected shortfall is difficult

e Difficult to backtest, since extremes by definition more infrequent
than observations in the body of the distribution

e VaR backtesting involves counting episodes in which a quantile is
exceeded over some past period

e VaR ES involves counting episodes in which a conditional mean size
of exceedance on each date is exceeded over some past period

e At any useful confidence level, relatively few exceedances of VaR

e Each one provides one observation on exceedance size

e But you need many to have an estimate of the conditional mean
e In addition to limitations of VaR backtesting

e Revised Basel standards backtest VaR at 97.5- and 99-percent
confidence levels as internal model check

e No requirement to test ES itself
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The elicitability problem

Elicitability is a desirable property of a statistic of a random
variable such as P&L

Forecasts of elicitable statistics can be tracked day by day to see
how close they are to their realizations (scoring)

VaR is elicitable using this scoring function:

e Each day, measure the absolute value of the difference between VaR

and P&L
e Weight is « if there is an excession, otherwise 1 — «
e A low score indicates few excessions, thus validates VaR
e But note that a zero score would indicate P&L has no variability

ES is not elicitable, i.e. no such scoring function can be formulated
But ES can nonetheless be evaluated through backtesting
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= Extreme value theory

I—Overview of extreme value theory

Modeling extremes

e Extreme value theory: (EVT) set of models focused on extreme
events rather than entire return distribution
e |osses a random variable X with observed realizations
e Treat losses as positive numbers for convenience
e E.g. multiply returns by -1 for long position
e Goals of EVT
e Extract information about extreme losses that go beyond what has
been observed empirically
e Determine probability distributions of extremes for application in risk
analysis
e What is an extreme? Two standard definitions

Block maximum: maximum value in a set of successive
observations over a given time horizon: max(Xy, Xz, ... X7)

Peaks over threshold: realizations exceeding a given high
threshold: {X¢|X; > u}, with v a “large number”
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= Extreme value theory

I—Overview of extreme value theory

Extreme value distributions

e Probability distributions of block maxima converge to generalized
extreme value (GEV) distribution as T — oo
e Few assumptions regarding distribution, just i.i.d. from some
distribution
o Extreme value must be normalized in some way
e Analogous to central limit theorem (CLT):
e Sum of independent random variates with finite mean and variance
converges—normal distribution
o CLT applies to normalized random variates
e GEV distribution comes in 3 variants
e Thin, e.g. mortality: no possibility of exceeding some finite limit

e “Normal”
e Fat-tailed, e.g. most asset returns: low but material probability of

very large (loss) realization
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I—Overview of extreme value theory

Power laws and the tail index

e If a GEV-distributed random variable falls into fat-tailed category,
then large losses follow a power law:

P[X: > x] = L(X)X;", x,0>0,

e L(X) is a normalizing function that varies little with t
e For example, a constant or the logarithmic function, which rises very
gradually for large values of the argument

e ¢ called the tail index.
e Fat-tailed asset returns/losses have tail index in excess of 2
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L Estimation

Estimating the tail index

e Simple approach: Hill’s estimator

e To apply Hill's estimator to loss on long position in single asset
e Multiply set of returns by —1
e Set (somewhat arbitrarily) threshold u for extreme loss

{Xe}te=1,... Tt ={—re|rn < —u}
e Or, equivalently, include k largest losses in the data set: largest k
order statistics, denoted {Xy), ..., X}, with X5 > ... > X
e Estimator is the reciprocal of the mean log excess of losses over the
threshold u or X:

-1
k

;= %Z In(X(J-)) - |n(X(k))

j=1

e Example: S&P 500 daily returns since 1928
e Bad news: varies considerably with “user input,” the threshold
e Good news: converges to about 3.0
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L Estimation

Estimating the tail index
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Estimates of the tail index ¢ using Hill's estimator and k largest-magnitude negative
returns, with k =5,...,300. Purple plot: #;gray plot: k. Data source: Bloomberg
Financial L.P.
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