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Stress testing and scenario analysis

What are stress tests?

� Stress tests analyze performance under extreme loss scenarios

� Heuristic portfolio analysis

� Steps in carrying out a stress test

1. Determine appropriate scenarios
2. Calculate shocks to risk factors in each scenario
3. Value the portfolio in each scenario

� Objectives of stress testing

� Address tail risk
� Reduce model risk by reducing reliance on models
� “Know the book”: stress tests can reveal vulnerabilities in specfic

positions or groups of positions

� Criteria for appropriate stress scenarios

� Should be tailored to firm’s specific key vulnerabilities
� And avoid assumptions that favor the firm, e.g. competitive

advantages in a crisis
� Should be extreme but not implausible
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Stress testing and scenario analysis

Approaches to formulating stress scenarios

Historical scenarios based on actual past events

� Issues: time frame of individual returns, treatment of
correlation

� Omitting key risk factor, such as option implied volatility for
option portfolio

“What if” or hypothetical scenarios based on assessment of potential
large market and credit events

� Must be calibrated so as to achieve appropriate severity
� May be based on models and/or macroeconomic scenario,
must then be translated into asset returns

Factor-push approach in place of or (better) in addition to judgement

� Compute impact of many combinations of risk factor returns
� Stress losses define as largest portfolio losses

5/24



Incorporating extreme events into risk measurement

Stress testing and scenario analysis

Stress testing and scenario analysis

Strengths and weaknesses of stress tests

� Pros

� Avoid reliance on models, model risk
� Easy to communicate

� Cons

� Scenarios are not directly associated with probabilities
� Arbitrariness in scenario design
� Difficulty including, configuring large number of risk factors
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Portfolio sensitivity analysis

� Often categorized as a form of stress testing

� But focused on small changes

� Help know the book, identify concentrations, understanding drivers
of P&L and risk

� Can capture nonlinearity by displaying convexities, but may miss
nonlinearities that only appear if large market moves realized
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Definition of expected shortfall

� Expected shortfall (or
conditional Value-at-Risk or
tail Value-at-Risk or
expected tail loss) is defined
as expected value of losses,
given that VaR loss is exceeded

� Expected value of realizations
of the random variable X ,
representing portfolio losses
expressed as a positive number,
in the tail of the distribution,
left of the VaR scenario:

E [X |X > VaR(t, α, τ)]
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Expected shortfall at a 95 percent confidence
level is area under density to left of VaR, divided
by probability (0.05) that VaR is breached.
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Estimation of expected shortfall

� VaR a quantile of loss distribution↔expected shortfall a moment of
truncated loss distribution

� Expected shortfall for a single position can be computed using the
same basic approaches used to compute VaR

� Parametric and Monte Carlo simulation approaches can employ same
specific distributional hypothesis as VaR

� Monte Carlo and historical simulation approaches can employ same
set of simulated values as VaR

� Parametric expected shortfall computed analytically

� Monte Carlo and historical simulation estimates of expected
shortfall: mean of simulated losses> VaR(t, α, τ)

� Example: 1-day expected shortfall of long position in S&P 500
index with initial value $1 000 000 as of close on 28Aug2013
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Parametric estimates of expected shortfall
� Assume returns lognormally distributed, use EWMA estimate of
volatility 0.00691049 as of 28Aug2013

� Moments of truncated normal distribution can be computed
analytically

� In lognormal model, ratio of expected shortfall to the VaR is

−
φ(z1−α)

(1− α)z1−α

� φ(·) represents standard normal density function, e.g.
φ(z0.05) = φ(−1.645) = 0.103136

conf. level VaR exp. shortfall ratio

0.900 8 817.04 12 074.24 1.3694
0.950 11 302.38 14 173.64 1.2540
0.975 13 452.99 16 046.44 1.1928
0.990 15 947.66 18 270.67 1.1457

Parametric estimates of 1-day VaR and expected shortfall of $1 000 000 long

position in S&P 500 on 28Aug2013.
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Estimating expected shortfall via historical
simulation

� Use 2 years (T = 503) of return observations from 28Aug2011 to
28Aug2013

� Estimated as mean of observed losses in excess of VaR scenario

� As with VaR, expected shortfall estimates may vary widely with
historical look-back period

conf. level rank VaR exp. shortfall ratio

0.900 50 11 348.34 18 439.68 1.6249
0.950 25 16 147.23 23 280.36 1.4418
0.975 12 22 966.30 27 450.94 1.1953
0.990 5 26 705.46 30 872.39 1.1560

Historical simulation estimates of 1-day VaR and expected shortfall of

$1 000 000 long position in S&P 500 on 28Aug2013. The rank stated in the

table is that of the smallest loss included in expected shortfall and is one less

than that of the VaR scenario.
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Computation of expected shortfall by historical
simulation

i t St date t St−1 r̃ (i) r̃arith,(i) P&L
1 52 1229.10 09Nov2011 1275.92 -0.03739 -0.03670 -36 695.09
2 18 1129.56 22Sep2011 1166.76 -0.03240 -0.03188 -31 883.16
3 17 1166.76 21Sep2011 1202.09 -0.02983 -0.02939 -29 390.48
4 25 1099.23 03Oct2011 1131.42 -0.02886 -0.02845 -28 450.97
5 46 1218.28 01Nov2011 1253.30 -0.02834 -0.02794 -27 942.23
6 9 1154.23 09Sep2011 1185.90 -0.02707 -0.02671 -26 705.46
..
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The entries in the penultimate column are the ordered arithmetic historical

returns r̃ (i), i = 1, . . . ,T and T = 503. The P&L realizations are x

(

S̃
(i) − St

)

.
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Relationship of expected shortfall to VaR

� Expected shortfall is always at least as great as the VaR: average of
loss levels greater than the VaR

� Can be much larger than VaR if return distribution is heavy-tailed
and skewed

� Ratio of expected shortfall to VaR is higher at lower confidence
levels and falls toward 1 for very high confidence levels

� Many large observations beyond VaR at lower confidence level

� The normal distribution is thin-tailed→

� Parametric estimates of ratio of expected shortfall to VaR relatively
low at lower confidence level

� Highlights disadvantage of standard model: implies risk of very large
losses relatively low

� Empirical distributions heavy-tailed→

� Historical simulation expected shortfall generally quite high relative
to VaR

� Disparity shrinks as confidence level rises
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Estimation of expected shortfall by historical
simulation

parametric lognormal model

historical simulation
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Ratio of expected shortfall to VaR as a function
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Comparison of empirical distribution of log S&P
returns 28Aug2011 to 28Aug2013 and normal
model.
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Advantages and disadvantages of expected shortfall

� Expected shortfall in principle oriented toward tail-risk measurement

� More appropriate than VaR for use in setting (→)economic capital
� States average extreme event if extreme event should occur

� But unlikely per se to provide significant improvement in tail risk
measurement

� Not really an alternative to VaR
� Alternative statistic within VaR framework
� If data and model not providing good tail risk estimate, expected

shortfall won’t help much
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Backtesting expected shortfall is difficult

� Difficult to backtest, since extremes by definition more infrequent
than observations in the body of the distribution

� VaR backtesting involves counting episodes in which a quantile is
exceeded over some past period

� VaR ES involves counting episodes in which a conditional mean size
of exceedance on each date is exceeded over some past period

� At any useful confidence level, relatively few exceedances of VaR
� Each one provides one observation on exceedance size
� But you need many to have an estimate of the conditional mean

� In addition to limitations of VaR backtesting

� Revised Basel standards backtest VaR at 97.5- and 99-percent
confidence levels as internal model check

� No requirement to test ES itself
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The elicitability problem

� Elicitability is a desirable property of a statistic of a random
variable such as P&L

� Forecasts of elicitable statistics can be tracked day by day to see
how close they are to their realizations (scoring)

� VaR is elicitable using this scoring function:

� Each day, measure the absolute value of the difference between VaR
and P&L

� Weight is α if there is an excession, otherwise 1− α

� A low score indicates few excessions, thus validates VaR
� But note that a zero score would indicate P&L has no variability

� ES is not elicitable, i.e. no such scoring function can be formulated

� But ES can nonetheless be evaluated through backtesting
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Overview of extreme value theory

Modeling extremes

� Extreme value theory: (EVT) set of models focused on extreme
events rather than entire return distribution

� Losses a random variable x̃ with observed realizations

� Treat losses as positive numbers for convenience
� E.g. multiply returns by -1 for long position

� Goals of EVT

� Extract information about extreme losses that go beyond what has
been observed empirically

� Determine probability distributions of extremes for application in risk
analysis

� What is an extreme? Two standard definitions

Block maximum: maximum value in a set of successive
observations over a given time horizon: max(X1,X2, . . .XT )

Peaks over threshold: realizations exceeding a given high
threshold: {Xt |Xt > u}, with u a “large number”
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Overview of extreme value theory

Extreme value distributions

� Probability distributions of block maxima converge to generalized
extreme value (GEV) distribution as T → ∞

� Few assumptions regarding distribution, just i.i.d. from some

distribution

� Extreme value must be normalized in some way

� Analogous to central limit theorem (CLT):

� Sum of independent random variates with finite mean and variance
converges→normal distribution

� CLT applies to normalized random variates

� GEV distribution comes in 3 variants

� Thin, e.g. mortality: no possibility of exceeding some finite limit
� “Normal”
� Fat-tailed, e.g. most asset returns: low but material probability of

very large (loss) realization
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Overview of extreme value theory

Power laws and the tail index

� If a GEV-distributed random variable falls into fat-tailed category,
then large losses follow a power law:

P [Xt ≥ x ] = L(Xt)X
−ι

t , x , ι > 0,

� L(X ) is a normalizing function that varies little with t

� For example, a constant or the logarithmic function, which rises very
gradually for large values of the argument

� ι called the tail index.

� Fat-tailed asset returns/losses have tail index in excess of 2
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Estimating the tail index
� Simple approach: Hill’s estimator
� To apply Hill’s estimator to loss on long position in single asset

� Multiply set of returns by −1
� Set (somewhat arbitrarily) threshold u for extreme loss

{Xt}t=1,...,T = {−rt |rt < −u}

� Or, equivalently, include k largest losses in the data set: largest k
order statistics, denoted {X(1), . . . ,X(k)}, with X(2) ≥ . . . ≥ X(k)

� Estimator is the reciprocal of the mean log excess of losses over the
threshold u or X(k):

ι̂ =





1

k

k
∑

j=1

ln(X(j))− ln(X(k))





−1

� Example: S&P 500 daily returns since 1928
� Bad news: varies considerably with “user input,” the threshold
� Good news: converges to about 3.0
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Estimating the tail index
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Estimates of the tail index ι using Hill’s estimator and k largest-magnitude negative
returns, with k = 5, . . . , 300. Purple plot: ι̂;gray plot: k. Data source: Bloomberg
Financial L.P.
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